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Introduction

Let S be a semigroup and let U < S.

Definition

The relative rank of S with respect to U is the minimal cardinality
of a subset V € S such that (U u V) = S, that is, U together
with V generate S. We denote the relative rank by r(S : U).

Theorem (Sierpiriski, 1935)

The relative rank of the semigroup of all mappings from an infinite
set A to A with respect to any subsemigroup is either uncountable
or finite and then equal to 0, 1 or 2.
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Introduction

Let X be a linearly ordered set. Let Ox be the set of all
order-preserving functions from X to X.

Theorem (Higgins, Howie, Mitchell, Rugkuc, 2003)

Let X be a countably infinite linearly ordered set, or an infinite
well-ordered set (of arbitrary cardinality). Then the relative rank of
XX with respect to Ox is 1.
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Introduction

If X is a metric space then let L(X) and C(X) be the class of all
Lipschitz and all continuous functions from X to X, respectively.
Let ' = NN be a metric space with the metric d(x,y) = 1/n
where N = {1,2,...} and n is the first coordinate such that

Xp # Yn, for x # y.
Theorem (Cichon, Mitchell, Morayne, 2007)

If N is defined as above then we have r(C(N') : ( ) =Ry, If
x = (1,1,...) then r(C(N\{x}) : LNM\{x})) =
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Main result

Let B(X) be the family of all Borel functions from X to X.

Theorem

If an uncountable Polish space X satisfies one of the following
conditions

e X is 0-dimensional,
e X is homeomorphic to its square,

e X contains a homeomorphic copy of the interval [0, 1],
then r(B(X) : C(X)) = N;.
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Proof of the inequality r(B(X) : C(X)) = ¥;

Suppose that r(B(X) : C(X)) < No.

Then there is a family {¢, : n < w} € B(X) such that

(C(X) U {tn: n<w})y=B(X).

Let

Bo(X,Y) = {fe XY : fHU]e LI, ,(X) for each U e TI(Y)}
and B.(X) = Ba(X, X).

We have:

Fact
For every f € B(X) there is an o < N1 such that f € B, (X).

Thus for every n < w there is an «,, < Xj such that ¢, € B,,(X).
Let v = sup,, an + w.

W. Bielas Generating Borel Functions with Continuous Functions



Proof of the inequality r(B(X) : C(X)) = ¥;

Knowing that g o f € By y148+1(X) for f € B,(X) and g € Bg(X),
we have that

fk ©Yp,  ©...0Ff 0tpy oy € By(X)

for any fo,...,fr e C(X) and ng,...,nk 1 < w.
This leads to a contradiction, since By, (X) & B(X).
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Preparation for a proof of r(B(X) : C(X)) < N;

Since X is uncountable there are Cantor sets D, E € X and
homeomorphism ¢ : D x D — E.
Fact

Every nonempty and closed subset of a 0-dimensional metric space
Is its retract.

Thus if X is 0-dimensional then every continuous function
f € C(D, E) has an extension g € C(X, E).
Then

(%) for every d € D there is an f € C(X) such that f|D = ¢(d,-).

If X contains a homeomorphic copy / of the unit interval, then
adding requirement £ S | we can use the Tietze extension
theorem to make X satisfy the condition ().
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Preparation for a proof of r(B(X) : C(X)) < N;

If X is homeomorphic to its square, then there is a continuous
injection h: D x X — X.

In this case we define ¢ = h|(D x D).

Then ¢(d,-) = h(d,-)|D and h(d,-) € C(X) for any d € D.
Thus in this case X also satisfies the condition ().

Lemma

Assume that there are Cantor sets D, E contained in an
uncountable Polish space X which satisfy the condition (=), i.e. for
every d € D there is an f € C(X) such that f|D = ¢(d,-). Then
for every Borel function F : D x X — X there are Borel functions
G, H € B(X) such that for any d € D there is an f € C(X) such
that F(a,-) = GofoH.
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Proof of Lemma

Let us recall that (Kuratowski, 1934) if X, Y are Polish spaces of
the same cardinality then there exists a bijection f € B1(X,Y)
from X onto Y such that f~1 e Bi(Y, X).

Thus there is a bijection H : X — D such that H € B;(X, D) and
H=le By(D, X).

For every e € E we define

G(e) = F(mi(d (e)), H H(ma(d  (e)))),

where 71,y are projections.

We see that G(¢(a, b)) = F(a, H~1(b)) for every a, b€ D.
Fix d € D.

From (x) there is an f € C(X) such that ¢(d,-) = f|D.
Thus for every x € X,

G(f(H(x))) = G(¢(d, H(x))) = F(d, H"(H(x))) = F(d,x).
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Proof of the inequality r(B(X) : C(X)) < ¥

Fact

Let D be a Cantor set. For each o« < N there is a Borel function
Fo : D x X — X which is universal for the class B, (X), i.e. for
any f € B,(X) there is a d € D such that f = F,(d,-).

From the previous lemma there are functions G,, H, € B(X) such
that for every d € D there is an f € C(X) such that

Fo(d,-) = Gy ofoH,.

Now it suffices to show that

(C(X)u{Gy:a <N} U{H,:a<¥i})=B(X).
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Fact

Let D be a Cantor set. For each o« < Ny there is a Borel function
Fo : D x X — X which is universal for the class B,(X), i.e. for
any f € Bo(X) there is a d € D such that f = F,(d,-).

Fix g € B(X).

Then from the fact that B(X) = | J,y, Ba(X) thereis an a < ¥;
such that g € B, (X).

There is also a d € D such that F,(d,-) = g.

Functions G,, H, were chosen in such a way that there is an

f € C(X) such that F,(d,-) = G, o f o H,.

Thus

g=GyofoH,e(C(X)u{Gg:p <RV} u{Hg: [ <Ni}).
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Is there an uncountable Polish space X such that
N; < r(B(X): C(X)) <¢?
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